56 research outputs found

    Synthesis and structural characterization of a mimetic membrane-anchored prion protein

    Get PDF
    During pathogenesis of transmissible spongiform encephalopathies (TSEs) an abnormal form (PrPSc) of the host encoded prion protein (PrPC) accumulates in insoluble fibrils and plaques. The two forms of PrP appear to have identical covalent structures, but differ in secondary and tertiary structure. Both PrPC and PrPSc have glycosylphospatidylinositol (GPI) anchors through which the protein is tethered to cell membranes. Membrane attachment has been suggested to play a role in the conversion of PrPC to PrPSc, but the majority of in vitro studies of the function, structure, folding and stability of PrP use recombinant protein lacking the GPI anchor. In order to study the effects of membranes on the structure of PrP, we synthesized a GPI anchor mimetic (GPIm), which we have covalently coupled to a genetically engineered cysteine residue at the C-terminus of recombinant PrP. The lipid anchor places the protein at the same distance from the membrane as does the naturally occurring GPI anchor. We demonstrate that PrP coupled to GPIm (PrP-GPIm) inserts into model lipid membranes and that structural information can be obtained from this membrane-anchored PrP. We show that the structure of PrP-GPIm reconstituted in phosphatidylcholine and raft membranes resembles that of PrP, without a GPI anchor, in solution. The results provide experimental evidence in support of previous suggestions that NMR structures of soluble, anchor-free forms of PrP represent the structure of cellular, membrane-anchored PrP. The availability of a lipid-anchored construct of PrP provides a unique model to investigate the effects of different lipid environments on the structure and conversion mechanisms of PrP

    M cell-depletion blocks oral prion disease pathogenesis

    Get PDF
    Many prion diseases are orally acquired. Our data show that after oral exposure, early prion replication upon follicular dendritic cells (FDC) in Peyer's patches is obligatory for the efficient spread of disease to the brain (termed neuroinvasion). For prions to replicate on FDC within Peyer's patches after ingestion of a contaminated meal, they must first cross the gut epithelium. However, the mechanism through which prions are conveyed into Peyer's patches is uncertain. Within the follicle-associated epithelium overlying Peyer's patches are microfold cells (M cells), unique epithelial cells specialized for the transcytosis of particles. We show that following M cell-depletion, early prion accumulation upon FDC in Peyer's patches is blocked. Furthermore, in the absence of M cells at the time of oral exposure, neuroinvasion and disease development are likewise blocked. These data suggest M cells are important sites of prion uptake from the gut lumen into Peyer's patches

    Follicular Dendritic Cell-Specific Prion Protein (PrPc) Expression Alone Is Sufficient to Sustain Prion Infection in the Spleen

    Get PDF
    Prion diseases are characterised by the accumulation of PrPSc, an abnormally folded isoform of the cellular prion protein (PrPC), in affected tissues. Following peripheral exposure high levels of prion-specific PrPSc accumulate first upon follicular dendritic cells (FDC) in lymphoid tissues before spreading to the CNS. Expression of PrPC is mandatory for cells to sustain prion infection and FDC appear to express high levels. However, whether FDC actively replicate prions or simply acquire them from other infected cells is uncertain. In the attempts to-date to establish the role of FDC in prion pathogenesis it was not possible to dissociate the Prnp expression of FDC from that of the nervous system and all other non-haematopoietic lineages. This is important as FDC may simply acquire prions after synthesis by other infected cells. To establish the role of FDC in prion pathogenesis transgenic mice were created in which PrPC expression was specifically “switched on” or “off” only on FDC. We show that PrPC-expression only on FDC is sufficient to sustain prion replication in the spleen. Furthermore, prion replication is blocked in the spleen when PrPC-expression is specifically ablated only on FDC. These data definitively demonstrate that FDC are the essential sites of prion replication in lymphoid tissues. The demonstration that Prnp-ablation only on FDC blocked splenic prion accumulation without apparent consequences for FDC status represents a novel opportunity to prevent neuroinvasion by modulation of PrPC expression on FDC

    Glia-to-neuron transfer of miRNAs via extracellular vesicles: a new mechanism underlying inflammation-induced synaptic alterations

    Get PDF
    Recent evidence indicates synaptic dysfunction as an early mechanism affected in neuroinflammatory diseases, such as multiple sclerosis, which are characterized by chronic microglia activation. However, the mode(s) of action of reactive microglia in causing synaptic defects are not fully understood. In this study, we show that inflammatory microglia produce extracellular vesicles (EVs) which are enriched in a set of miRNAs that regulate the expression of key synaptic proteins. Among them, miR-146a-5p, a microglia-specific miRNA not present in hippocampal neurons, controls the expression of presynaptic synaptotagmin1 (Syt1) and postsynaptic neuroligin1 (Nlg1), an adhesion protein which play a crucial role in dendritic spine formation and synaptic stability. Using a Renilla-based sensor, we provide formal proof that inflammatory EVs transfer their miR-146a-5p cargo to neuron. By western blot and immunofluorescence analysis we show that vesicular miR-146a-5p suppresses Syt1 and Nlg1 expression in receiving neurons. Microglia-to-neuron miR-146a-5p transfer and Syt1 and Nlg1 downregulation do not occur when EV\ue2\u80\u93neuron contact is inhibited by cloaking vesicular phosphatidylserine residues and when neurons are exposed to EVs either depleted of miR-146a-5p, produced by pro-regenerative microglia, or storing inactive miR-146a-5p, produced by cells transfected with an anti-miR-146a-5p. Morphological analysis reveals that prolonged exposure to inflammatory EVs leads to significant decrease in dendritic spine density in hippocampal neurons in vivo and in primary culture, which is rescued in vitro by transfection of a miR-insensitive Nlg1 form. Dendritic spine loss is accompanied by a decrease in the density and strength of excitatory synapses, as indicated by reduced mEPSC frequency and amplitude. These findings link inflammatory microglia and enhanced EV production to loss of excitatory synapses, uncovering a previously unrecognized role for microglia-enriched miRNAs, released in association to EVs, in silencing of key synaptic genes

    Synthetic mammalian prions

    No full text
    Recombinant mouse prion protein (recMoPrP) produced in Escherichia coli was polymerized into amyloid fibrils that represent a subset of beta sheet-rich structures. Fibrils consisting of recMoPrP(89-230) were inoculated intracerebrally into transgenic (Tg) mice expressing MoPrP(89-231). The mice developed neurologic dysfunction between 380 and 660 days after inoculation. Brain extracts showed protease-resistant PrP by Western blotting; these extracts transmitted disease to wild-type FVB mice and Tg mice overexpressing PrP, with incubation times of 150 and 90 days, respectively. Neuropathological findings suggest that a novel prion strain was created. Our results provide compelling evidence that prions are infectious proteins

    Strain-specified characteristics of mouse synthetic prions

    No full text
    Synthetic prions were produced in our laboratory by using recombinant mouse prion protein (MoPrP) composed of residues 89-230. The first mouse synthetic prion strain (MoSP1) was inoculated into transgenic (Tg) 9949 mice expressing N-terminally truncated MoPrP(Delta23-88) and WT FVB mice expressing full-length MoPrP. On first and second passage in Tg9949 mice, MoSP1 prions caused disease in 516 +/- 27 and 258 +/- 25 days, respectively; numerous, large vacuoles were found in the brainstem and gray matter of the cerebellum. MoSP1 prions passaged in Tg9949 mice were inoculated into FVB mice; on first and second passage, the FVB mice exhibited incubation times of 154 +/- 4 and 130 +/- 3 days, respectively. In FVB mice, vacuolation was less intense but more widely distributed, with numerous lesions in the hippocampus and cerebellar white matter. This constellation of widespread neuropatho-logic changes was similar to that found in FVB mice inoculated with Rocky Mountain Laboratory (RML) prions, a strain derived from a sheep with scrapie. Conformational stability studies showed that the half-maximal GdnHCl (Gdn1/2) concentration for denaturation of MoSP1 prions passaged in Tg9949 mice was approximately 4.2 M; passage in FVB mice reduced the Gdn1/2 value to approximately 1.7 M. RML prions passaged in either Tg9949 or FVB mice exhibited Gdn1/2 values of approximately 1.8 M. The incubation times, neuropathological lesion profiles, and Gdn1/2 values indicate that MoSP1 prions differ from RML and many other prion strains derived from sheep with scrapie and cattle with bovine spongiform encephalopathy
    corecore